
REVIEW

Towards the development of universal, fast and
highly accurate docking/scoring methods: a long
way to go
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Accelerating the drug discovery process requires predictive computational protocols capable of reducing or simplifying the
synthetic and/or combinatorial challenge. Docking-based virtual screening methods have been developed and successfully
applied to a number of pharmaceutical targets. In this review, we first present the current status of docking and scoring
methods, with exhaustive lists of these. We next discuss reported comparative studies, outlining criteria for their interpretation.
In the final section, we describe some of the remaining developments that would potentially lead to a universally applicable
docking/scoring method.
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Introduction

Molecular discovery: high-throughput screening vs virtual

screening

Since the advent of the human genome project and

functional genomics, there has been a continual increase

in the number of new therapeutic targets available for drug

design. During this time, advances in crystallography and

nuclear magnetic resonance spectroscopy have contributed

many structural details of protein and protein–ligand

complexes. In response to these newly discovered targets

and their structural elucidation, cost- and time-efficient

design and syntheses of bioactive compounds targeting these

became a priority for the field of drug design. In recent years,

this field has partially turned away from the traditional

approaches, such as rational and semi-rational design, to the

high-throughput screening of large combinatorial libraries.

However, the identification of novel lead compounds via

these traditional approaches has been more fruitful com-

pared with the low hit rates observed with combinatorial

methods (Shoichet et al., 2002). In practice, identifying leads

or hits in silico rather than via library generation and

screening is both faster and more economical, while being

easier to setup. Indeed, screening of large libraries has been

used in combination with (or in parallel to) or sometimes

substituted by computational approaches. Among the most

commonly used virtual screening (VS) tools are docking

methods, which have been successfully used to predict the

binding modes and affinities of many potent enzyme

inhibitors as well as receptor antagonists. As a result, many

drugs developed in part by computer-aided structure-based

drug design methods are in late-stage clinical trials or have

now reached the market (Borman, 2005). Following these

success stories, the pharmaceutical companies are increas-

ingly relying on computational methods as one of the

primary platforms for designing new potential leads.

Current and future challenges

With the ever-growing interest in using computational

structure-based drug design tools, there is a need to

scrutinize the field and examine its current state and its

future. An overview of the latest progress in the structure-

based drug design field shows that significant improvements

must still be achieved in order to develop highly accurate

molecular docking and VS methods (Taylor et al., 2002;

Krumrine et al., 2003; Brooijmans and Kuntz, 2003; Mohan

et al., 2005; Ferrara et al., 2006; Klebe, 2006; Rester, 2006;

Sousa et al., 2006). As most of the discussed programmes

have been reported, we will refer the reader to the many
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reviews cited throughout this review and original articles for

more information about each piece of software.

Instead, we review herein the state-of-the-art of docking/

scoring methods and discuss the achievements covering the

literature until June 2007, the challenges tackled over

the recent years and the remaining bottlenecks. This review

does not cover low-throughput approaches including mole-

cular dynamics simulation-based approaches (Aqvist et al.,

1994; Jones-Hertzog and Jorgensen, 1997; Gervasio et al.,

2005) and de novo design programmes such as LEGEND

(Nishibata and Itai, 1993), DREAMþ þ (Makino et al., 1999)

and LUDI (Bohm, 1992).

The available docking and scoring methods

Docking and scoring methods

To date, over 60 docking programmes (Table 1) and more

than 30 scoring functions (SFs) (Table 2) have been disclosed

(see Supplementary Information for more detailed tables).

However, only some of these programmes were made

available and a limited number of them are widely used

(AutoDock, DOCK, FlexX, FRED, Glide, GOLD, ICM, QXP/

Floþ , Surflex). In the following sections, the references will

appear only in tables and will not be repeated when a

programme or a SF is given as an example.

Each docking programme relies on two complementary

components: (1) a method to explore the conformational

space of the ligand and/or the protein target and (2) a SF to

evaluate the proposed binding modes referred to as poses. An

SF should first assign the best score to the ‘correct pose’ (that

is, the native pose observed in crystal structures), thus

‘guiding’ the conformational sampling algorithm. This first

aspect is critical to accurately predict the binding mode.

Second, the docked poses of highly active compounds

should be attributed better scores than those of non-binders

or poor binders. This second aspect is critical in lead

optimization and in VS, where potential hits are to be

extracted from large libraries. In fact, some programmes use

multiple SFs, such as a crude SF to direct the docking and a

more refined SF for scoring the final poses.

Whenever a docking programme is selected, two inversely

correlated factors are to be considered. While speed is

essential for effective virtual high-throughput screening of

large libraries, accuracy is critical for lead optimization.

Conformational sampling methods

Multiconformer docking algorithms. Rigid-body docking

methods use either a single conformation or multiconformer

libraries to consider ligand flexibility. These approaches

often dock the small molecules using shape complementarity

or interaction site matching algorithms (for example, ADAM,

DOCK, FRED, FTDock, LIGIN, SANDOCK and YUCCA). In

matching algorithms (Figure 1a), a pharmacophore repre-

senting the protein is initially developed and used to guide

the docking. An initial ligand conformation is generated and

a ligand pharmacophore is derived from this conformation.

The distance matrices (listings of all the distances between

each of the pharmacophoric points) of the ligand and

protein pharmacophore are examined for a match. If there

is a match, rotational and translational vectors are calculated

and applied to the ligand. These vectors position the ligand

in the same frame of reference as the protein. While speed is

the major strength of these approaches, their predictive

power is reduced as ligand poses are not fully refined,

making it difficult for the correct poses to be found or for an

accurate score to be assigned. Post-processing of selected

poses using an additional local search algorithm addresses

the former issue. Owing to their great speed, this first class of

programmes is very useful in selecting medium sized libraries

from extremely large libraries with acceptable enrichment in

active compounds.

Incremental construction. Docking programmes implementing

incremental construction (Figure 1b) methods build up the

ligand on-the-fly in the active site, often relying on libraries of

preferred conformations (for example, MIMUMBA) to connect

the fragments and to consider the ligand flexibility. To do so,

the ligand is split into a set of fragments, one of which is

selected as an anchor and rigidly docked to the binding site

using methods such as matching algorithms (for example,

DOCK, FlexX, FLOG, Hammerhead, Surflex). Another variation

is the docking of fragments followed by reconnection,

exemplified by the algorithm implemented in eHiTS.

Stochastic methods. The second class of conformational

sampling methods explores the ligand conformational space

on the fly. There are many different methods to search

stochastically with the most common methods being genetic

algorithms (GAs) and Monte Carlo (MC) search (Figure 2).

Many programmes make use of GAs (for example, AutoDock,

DARWIN, DIVALI, GOLD, EADock, FITTED and PSI-DOCK.),

first implemented in docking programmes in the mid-90s to

dock flexible ligands (Clark and Ajay, 1995; Jones et al., 1995;

Oshiro et al., 1995). GAs (Figure 2a) are based on Darwin’s

theory of evolution. The pose of the ligand is represented by

a chromosome, which is made up of genes. These genes code

for each torsional angle, as well as the ligand’s rotation and

translation in space. These poses then evolve through

transmission of genetic information (reproduction), altered

over time by genetic operators such as crossover and

mutation. There are many different methods for the

selection of the next generation, but the most popular is

the survival of the fittest, where the two lowest scoring

conformations are passed to the next generation. Modifica-

tions of GAs (Lamarckian GA in AutoDock or tabu search-

enhanced GA in PSI-DOCK) have been found to efficiently

explore the conformational space of the ligands.

With Monte Carlo (for example, DockVision, ICM,

MCDOCK, ProDOCK, SLIDE) (Figure 2b), the pose of the

ligand is sequentially modified through bond rotation,

translation and/or rigid body rotation, one or more para-

meters at a time, and the new conformation is then

evaluated. If the new conformation has a lower score, it is

kept. If a conformation is higher in energy, one can reject it

or use a selection criterion such as the Metropolis criterion.

Metropolis allows for higher energy conformation to exist

by allowing a temperature dependence (the higher the
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Table 1 Reported docking programmes and, when available, the latest version number, the key references and web sites

Program Reference(s) Website Search algorithma

Affinity N/A www.accelrys.com/products/
datasheets/i2_affinity_data.pdf

MC

ADAM (Yamada and Itai, 1993; Mizutani et al.,
1994, 2006)

www.immd.co.jp/en/
product_2.html

RBD

Autodock 4.0 (Morris et al., 1998; Osterberg et al.,
2002)

autodock.scripps.edu/ GA

CDOCKER (Wu et al., 2003a) N/A MD-SA
CHARMM (Vieth et al., 1998b, a) www.charmm.org/ GA and MC
CLIX (Lawrence and Davis, 1992) N/A RBD
DARWIN (Taylor and Burnett, 2000) N/A GA
DIVALI (Clark and Ajay, 1995) , N/A GA
DOCK 6 (Oshiro et al., 1995; Knegtel et al.,

1997; Kang et al., 2004; Moustakas
et al., 2006)

dock.compbio.ucsf.edu/ IC

DockIt N/A www.metaphorics.com/
products/dockit.html

N/A

DockVision 1.0.3 (Hart and Read, 1992) , www.dockvision.com/ MC
DoMCoSAR (Vieth and Cummins, 2000) N/A SA
DragHOME (Schafferhans and Klebe, 2001) N/A RBD
EADock (Grosdidier et al., 2007) N/A EA
eHiTs (Zsoldos et al., 2006) www.simbiosys.ca/ehits/

index.html
RBD of fragments followed by reconstruction

EUDOC (Pang et al., 2001) , N/A RBD
FDS (Taylor et al., 2003) N/A MC
DAIM-SEED-FFLD (Majeux et al., 1999; Budin et al., 2001;

Kolb and Caflisch, 2006)
biocroma.uzh.ch/SDL/DAIM-
SEED-FFLD_agreement.pdf

RBD

FITTED (Corbeil et al., 2007) www.fitted.ca GA
FlexX 2.2 (Rarey et al., 1996) www.biosolveit.de/ IC
FlexE (Rarey et al., 1999; Clau�en et al., 2001)
FlipDock (formerly
pyDock)

(Zhao and Sanner, 2007) www.scripps.edu/Byongzhao/
FLIPDock/

GA

FLOG (Miller et al., 1994) N/A IC
FRED (McGann et al., 2003) www.eyesopen.com/products/

applications/fred.html
RBD

FTDock (Gabb et al., 1997) www.bmm.icnet.uk/docking/
ftdock.html

RBD

GAMBLER (Charifson et al., 1999) N/A GA
GasDock (Li et al., 2004) N/A GA
GEMDOCK (Yang and Chen, 2004) N/A EA
GlamDock (Tietze and Apostolakis, 2007) N/A MC/SA
Glide 4.0 (Friesner et al., 2004; Sherman et al.,

2006)
www.schrodinger.com/
ProductDescription.php?
mID¼6&sID¼6&cID¼0

Hierarchical filters and MC

GOLD 3.1 (Verdonk et al., 2003, 2005) www.ccdc.cam.ac.uk/products/
life_sciences/gold/

GA

Hammerhead (Welch et al., 1996) N/A IC
HADDOCK (Dominguez et al., 2003) www.nmr.chem.uu.nl/haddock/ SA
HierDOCK/HierVLS (Floriano et al., 2004; Trabanino et al.,

2004)
N/A IC

ICM (Abagyan et al., 1994b; Totrov and
Abagyan, 1997)

www.molsoft.com/
docking.html

MC

LibDock (Diller and Merz, 2001) N/A MA
LIDAEUS (Wu et al., 2003b) N/A MA
LIGIN (Sobolev et al., 1996) N/A RBD
MacDOCK (Fradera et al., 2004) N/A IC
MCDOCK (Liu and Wang, 1999) N/A MC
MolDock (Thomsen and Christensen, 2006) N/A DE
MVP N/A N/A IC
PatchDOCK (Schneidman-Duhovny et al., 2005) N/A Shape complementarity
PAS-Dock (Tøndel et al., 2006) N/A TS
PhDOCK (Joseph-McCarthy et al., 2003) N/A MA
Ph4DOCK (Goto et al., 2004) N/A MA
PIPER (Kozakov et al., 2006) N/A Fast Fourier transform
Plants (Korb et al., 2006) N/A Ant colony optimisation
Prodock (Trosset and Scheraga, 1999) N/A MC
PRO_LEADS (Murray et al., 1999) N/A TS
ProPose (Seifert, 2005) N/A IC
PSI_DOCK (Pei et al., 2006) N/A GA with TS
Q-fit (Jackson, 2002) N/A MA
Quantum N/A www.q-lead.com/cnt/quantum N/A
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temperature, the more likely that a higher energy conforma-

tion is kept), resulting in the crossing of energy barriers on

the potential energy surface. If the new pose does not pass

the Metropolis criterion, then it is discarded and another set

of modifications is tried. Other stochastic optimization

algorithms, inspired by analogy to biology, are the ant colony

optimization (PLANTS) and the particle swarm optimization

(SODOCK/AutoDock) algorithms, both of which are com-

bined with a local search algorithm. Tabu searches (Pro_Leads)

have also been employed to consider ligand flexibility.

Table 1 Continued

Program Reference(s) Website Search algorithma

QXP/Floþ (McMartin and Bohacek, 1997) N/A MC
RiboDock (Morley and Afshar, 2004) N/A MC
ROSETTALIGAND (Meiler and Baker, 2006) N/A MC
SANDOCK (Burkhard et al., 1998) N/A MA
SDOCKER (Wu and Vieth, 2004) N/A Random walk
SLIDE (Schnecke and Kuhn, 2000; Zavodszky

and Kuhn, 2005)
N/A IC

SKELGEN (Alberts et al., 2005) N/A IC
SODOCK (Chen et al., 2007) N/A Swarm Optimisation
SG-DOCK/SP-DOCK (Fradera et al., 2000) N/A IC
Surflex 2.1 (Jain, 2003, 2007) N/A IC with MA
Yucca (Choi, 2005) N/A MC

Abbreviation: N/A, not available.
aDE, differential evolution; EA, evolutionary algorithm; GA, genetic algorithm; IC, incremental construction; MA, matching algorithm; MD, molecular dynamics;

RBD, rigid-body docking; SA, simulated annealing; TS, Tabu search.

Table 2 Reported SFs

Scoring function Software implementations Class Reference(s)

ChemScore GOLD, FRED, CScore,
PRO_LEADS

Empirical (Eldridge et al., 1997)

eHiTS SF eHiTS Empirical (Zsoldos et al., 2003)
FlexX SF FlexX Empirical (Rarey et al., 1996)
Fresno Standalone Empirical (Rognan et al., 1999)
GlideScore Glide Empirical (Friesner et al., 2004, 2006)
Hammerhead SF Hammerhead, Surflex,

LigandFit
Empirical (Jain, 1996)

HINT Standalone Empirical (Cozzini et al., 2002)
LigScore LigandFit Empirical (Krammer et al., 2005)
PLP LigandFit, FRED, DockIt Empirical (Gehlhaar et al., 1995)
RankScore FITTED Empirical/FF (Moitessier et al., 2006a)
SAFE_p None Empirical/FF (Sussman et al., 2002)
SCORE Standalone Empirical (Wang et al., 1998)
SCORE 3.0 PSI-DOCK Empirical (Pei et al., 2006)
SCORE1 LUDI Empirical (Böhm, 1994)
SCORE2 LUDI Empirical (Böhm, 1998)
ScreenScore FRED Empirical/consensus (Stahl and Rarey, 2001)
SIE Standalone Empirical/FF (Naim et al., 2007)
SLIDE SCORE SLIDE Empirical (Schnecke and Kuhn, 2000)
VALIDATE Standalone Empirical/FF (Head et al., 1996)
X-Score Standalone Empirical/consensus (Wang et al., 2002)
AutoDock SF AutoDock, SODOCK FF/empirical (Morris et al., 1998)
DockScore DOCK, CScore FF (Meng et al., 1992)
GoldScore GOLD, CScore FF (Jones et al., 1997)
HADDOCK Score HADDOCK FF (van Dijk et al., 2006b)
ICM SF ICM FF (Abagyan et al., 1994b)
QXP SF QXP/MCDOCK FF (McMartin and Bohacek, 1997)
BLEEP Standalone Knowledge based (Mitchell et al., 1999)
DrugScoreCSD Standalone Knowledge based (Velec et al., 2005)
DrugScorePDB Standalone Knowledge based (Gohlke et al., 2000)
M-Score Standalone Knowledge based (Yang et al., 2006)
PMF CScore, LigandFit,

BioMedCAChe, DockIt
Knowledge based (Muegge and Martin, 1999; Muegge, 2006)

SMoG SMoG Knowledge based (DeWitte and Shakhnovich, 1996; Ishchenko and
Shakhnovich, 2002)

Abbreviations: FF, force field; SF, scoring function.
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Multistep procedures. Using one or more of the algorithms

mentioned above in conjunction with refinement of the

poses has also been performed. For instance, EUDOC and

Glide combine the random generation of poses with their

refinement to obtain increased accuracy.

Consensus docking. All the methods described so far have

shown great success in predicting the binding modes of

co-crystallized ligands. However, none of them has been

identified as a universally applicable method. Furthermore,

CONS_DOCK, a consensus docking method using FlexX,

GOLD and DOCK (Paul and Rognan, 2002); AutoxX,

combining AutoDock and FlexX interaction models (Wolf

et al., 2007) and FITTED, combining a GA and interaction

site matching, have been found to be more accurate than the

individual search methods. Another way to improve a

Figure 1 Schematic representation of a matching algorithm (a) and an incremental construction algorithm (b) in the context of docking of a
flexible ligand.
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programme’s performance is to provide additional informa-

tion such as pharmacophore(s) to orient the docking (Hindle

et al., 2002; Moitessier et al., 2004; Verdonk et al., 2004), as

well as any other knowledge about the target that may

reduce the number of false positives and false negatives in VS

studies (Jansen and Martin, 2004).

Scoring functions

As previously discussed, SFs have a twofold function: to

direct the docking and to predict the binding affinity of the

final pose. In this section, only functions that are developed

to score the final poses will be discussed. Customized SFs

(developed for a specific target only) and functions used to

improve the docking accuracy will not be considered. In the

past 15 years, a number of SFs have been reported and

implemented in docking programmes. Table 2 summarizes

the literature in the field (see also Supplementary Informa-

tion for more detailed data). This table contains SFs used to

score the final pose while scoring functions used to orient

the docking algorithm towards the correct pose (e.g., know-

ledge-based interaction fingerprint scoring – (Mpamhanga

et al., 2006)) are not included. In general, SFs attempt to

predict the binding free energy or to rank-order compounds

by their bioactivity. These SFs are classified as force field

(FF)-based, empirical and knowledge-based (Tame, 1999;

Schulz-Gasch and Stahl, 2004; Mohan et al., 2005; Tame,

2005; Jain, 2006). As SF accuracy is critical for a successful VS

campaign (Klebe, 2006), considerable progress over the years

has been made. However, commonly used SFs are known to

Figure 2 Schematic representation of a genetic algorithm (a) and a Monte Carlo search (b) in the context of docking a flexible ligand.
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have limitations as the protein–ligand complex formation

often includes subtleties not captured by SFs (Gohlke

and Klebe, 2002). This in turn causes poor ranking of

compounds by predicted activities. Many oversimplifica-

tions, discussed in the following sections (for example,

solvation and entropy contributions to the binding free

energy), are believed to be the main cause of this pitfall. In

addition, the SFs tend to be more accurate with the

proteins and the docking programmes used to calibrate

them. Indeed, customized SFs calibrated for specific

targets have also been devised (Catana and Stouten, 2007).

To overcome this hurdle, more than one SF can be

alternatively employed with docking programmes. For

instance, GoldScore and ChemScore have been implemented

in GOLD, while ChemScore, ScreenScore and PLP can be

used with FRED. As for consensus docking, consensus

scoring, which combines several scoring methods, has been

found to be superior to the use of a single function in some

cases (X-Score, formerly known as X-Cscore; Wang et al.,

2002).

Empirical SFs. Since the pioneering work of Böhm (1994) in

the development of LUDI, a significant amount of work has

been devoted to the development and improvement of

empirical SFs. With empirical SFs, the evaluation of the

energetics of the ligand binding (essentially from protein/

ligand crystal structures) is decomposed into simpler,

scalable contributions arising from, for example, hydrogen

bonds, metal ligation, hydrophobic effects and freezing of

rotatable bonds (Equation (1)). The various scaling factors

(DGi in Equation (1)) are then defined by regression to fit

experimentally determined protein–ligand affinities.

DGbind ¼ DG0 þ DGHB

X
HB

f ðDrÞf ðD1aÞ þ DGmet

X
met

f ðDrÞ

þDGlipo

X
lipo

f ðDrÞ þ DGrotN
0
rot

ð1Þ

Among the most commonly used SFs is ChemScore, which

has been implemented in various docking programmes (for

example, GOLD, FRED). Standalone SFs have also been

devised and include X-Score, DrugScore, VALIDATE and

HINT. Each empirical SF differs by the number and nature of

the terms used to make up its equation. For instance, several

include an explicit directional hydrogen bond energy term

(for example, ChemScore, X-Score and the SFs implemented

in eHiTS, FlexX, Surflex), while only a few include an explicit

directional metal–ligand interaction term (for example,

eHiTS, Surflex and X-Score). Functions such as the eHiTS

and PLP SFs evaluate the internal energy of the ligand in its

bound conformation, while solvation and/or predicted

captured water molecules (within GlideScore) are computed

in a different manner. Many empirical SFs take into account

the hydrophobic effect in the binding, mostly either by

computing the hydrophobic surface buried in the complex

(for example, SCORE1/2, LigScore), or by evaluating the

match of the hydrophobicity of an atom with its environ-

ment (for example, FlexX, SCORE, SLIDE), while several

combine both approaches (for example, eHiTS, GlideScore,

HammerHead, X-Score). On the other hand, HINT computes

the logP of the ligand as a measure of its water solvation. The

entropic contribution to the binding energy due to the

freezing of torsional degrees of freedom upon binding is

often estimated by a term proportional to the number of

sp3–sp3 and sp2–sp3 rotatable bonds. In some cases (for

example, ChemScore, GlideScore, VALIDATE, X-Score), the

environment of a bond is taken into consideration to assess

the extent of its effect, while RankScore attempts to include

the freezing of protein side chains by scaling the interaction

with flexible side chains.

FF-based SFs. Force fields were originally developed to

reproduce conformational behaviour and thermodynamic

and kinetic properties of small molecules and macromole-

cules. When applied to protein–ligand complexes, FFs are

often found to significantly overestimate the binding affinity

(Equation (2)) even when applied in conjunction with

highly accurate, time-consuming techniques (for example,

Linear Interaction Energy method), which consider the bulk

water either explicitly or implicitly (for example, PB/SA, GB/

SA; Michel et al., 2006). Scaling factors applied to the non-

bonded terms (van der Waals and electrostatics) were found

to restore the predictiveness of FFs in this area.

DGbind ¼
Xlig

i

Xrec

j

Aij

r12
ij

� Bij

r6
ij

þ 332:0
qiqj

erij

" #
ð2Þ

When compared to empirical SFs, a smaller number of SFs

were developed exclusively from FFs. More commonly, FF

terms (illustrated in Equation (2)) are combined with terms

from empirical SFs, such as the solvation and ligand entropy

terms in the AutoDock SF. The choice of FF parameters is

varied; AutoDock, DOCK and RankScore SFs combine the

van der Waals, electrostatic and hydrogen bond interaction

energy computed using the AMBER FF, while GoldScore

makes use of the Tripos parameters and ICM implements a

hybrid AMBER-ECEPP/2 approach.

Knowledge-based SFs. Other popular SFs, such as DrugScore

and PMF, have been developed from statistical analysis of

crystal structures of ligand–protein complexes. These

analyses report the distribution of ligand–protein atom-type

pairs (histogram in Figure 3) and convert these data into

pairwise potentials (blue and green curves in Figure 3). In the

interaction between charged species (blue line), there is

a sharp minimum at a relatively close distance and a

secondary minimum at a larger separation, accounting for

the interaction via a bridging water molecule. In contrast,

the potential for a pair of aliphatic carbons (green line)

shows little preference over a wide range of interatomic

distances. The score is calculated by the sum of all

interaction pairs between each ligand and protein atom

lying within a sphere of a given cutoff (usually 6–12 Å).

Although these functions are expected to capture all the

data needed for predicting the free energy of binding,

some of the interactions are underrepresented in the

available crystal structures (for example interactions with

metals and/or halogens) and are not well parameterized.

As for FF-based SFs, correcting/additional terms were

implemented as exemplified by the solvation term included

in DrugScore.
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Comparative studies

Comparative studies. Due to the rapid evolution of docking

and scoring algorithms, comparing their efficiency was

needed. In the past decade, many comparative studies have

been reported that evaluate the relative performance of the

most popular programmes (Westhead et al., 1997; Bissantz

et al., 2000; Perez and Ortiz, 2001; Stahl and Rarey, 2001;

Terp et al., 2001; Doman et al., 2002; Diller and Li, 2003;

Jenkins et al., 2003; Schulz-Gasch and Stahl, 2003; Wang

et al., 2003, 2004; Ferrara et al., 2004; Kellenberger et al.,

2004; Kontoyianni et al., 2004; Kroemer et al., 2004; Perola

et al., 2004, 2007; Chen et al., 2006; Cummings et al., 2005;

Kontoyianni et al., 2005; Warren et al., 2006). These studies

can be classified into target-oriented studies and broad

comparative studies. This first class is of great interest for

the medicinal chemistry community, and aims to help

identify the best programme for a specific target. For

instance, programmes were evaluated for their ability to

dock to matrix metalloproteases (Ha et al., 2000; Hanessian

et al., 2001; Hu et al., 2004) and to score BACE-1 inhibitors

(Schafferhans and Klebe, 2001; Moitessier et al., 2006a;

Holloway et al., 2007) or mannosidase inhibitors (Englebi-

enne et al., 2007). The goal of the broader studies is to

evaluate the programmes’ accuracy on a set of proteins and is

threefold. They aim to evaluate and compare the ability of

different docking programs and/or SFs (either separately

or in combination) to (1) properly dock compounds to

proteins, (2) predict the ligand binding affinities and (3)

extract active compounds from libraries of decoys. In Figures

4–6, selected comparative studies are shown. Table 3 lists

reported comparative studies. While this manuscript was

under revision, other comparative studies were published

(McGaughey et al., 2007; Onodera et al., 2007; Zhou et al.,

2007) and are included in Table 3 but are not discussed.

Limitations of comparative studies. While comparative stu-

dies provide insight into the various programmes’ accuracy,

speed, applicability to a range of targets and other factors,

they should be considered with great care for many reasons.

First, the versions of the programmes in question are not

always specified and may vary from one study to another.

Second, the accuracy is greatly dependent on the settings

employed and fine-tuning parameters may lead to signifi-

cant changes in accuracy. As a result, greater expertise with a

specific programme may bias the study. Comparative studies

published as part of the development of new programmes

will not be discussed herein, as the authors are more

proficient with their own programme, thus lowering the

Figure 3 Potentials of mean force for a pair of aliphatic carbons (green) and a pair composed of a positively charged nitrogen and a negatively
charged oxygen (blue).
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objectivity of the study. We believe that the most useful

programmes for medicinal chemists are those that can

provide accurate and reliable results without extensive

training and/or labour-intensive optimizations.

Third, the preparation of receptors and ligands for docking

requires knowledge of the active site and careful considera-

tion of all possible isomers (for example, tautomers) and

protonation states. To address this issue, Warren and co-

workers have divided the work between chemists with

expertise on each of the proteins studied, and others with

expertise on each of the programmes considered. This

strategy significantly reduces bias, making this comparative

study very fair and objective.

Fourth, as pointed out by Cole et al. (2005), using the root

mean-square deviation (r.m.s.d.) as a criterion of docking

accuracy is questionable. For instance, an r.m.s.d. of less than

2.0 Å used as a criterion of success yields misleading results

when specific interactions such as directional hydrogen

bonds or floppy solvent exposed groups are to be considered.

In fact, Kontoyianni used a criterion that was more

subjective yet more representative of the true accuracy of

the programmes. In this study, in addition to examining the

r.m.s.ds, all of the poses were also visually inspected and

success of the docking was then described as ‘close’ (correct

pose), ‘active site’ (fair pose) or ‘inaccurate’ (wrong pose).

Unfortunately, this criterion would be difficult to implement

in programmes and therefore cannot be applied to large

testing sets. During the same year, interaction-based accu-

racy classification was also proposed and found to be a more

meaningful criterion of success than the r.m.s.d. (Kroemer

et al., 2004). Recently, Marcou and Rognan (2007) came to

the same conclusion when they used interaction fingerprints

combined with a Tanimoto coefficient. Additionally, the

metrics for success in virtual screening (usually enrichment

factors and ROC curves) are sometimes difficult to interpret

(Truchon and Bayly, 2007).

Fifth, self-docking is a good indication of a programme’s

ability to identify native poses amongst several others, but

provides little information about the accuracy in a real drug

discovery scenario. In practice, cross-docking is a more

Figure 4 Comparative studies of docking programmes. A criterion of r.m.s.d. o2 Å has been used in all the studies except in Kontoyianni and
co-workers, where a more suggestive criterion has been used (see text). R.m.s.d., root mean-square deviation.
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valuable experiment. In fact, although Warren and co-

workers pointed out that a careful selection of the protein

structure can reduce the impact of the induced fit upon

binding, many other studies have shown the significant

impact of protein flexibility on the docking accuracy

(Clau�en et al., 2001; Carlson, 2002; Osterberg et al., 2002;

Zentgraf et al., 2006; Corbeil et al., 2007).

Sixth, in certain cases, no mention is made (or insufficient

details are provided) regarding the CPU time required to run

the study. As many programmes (for example, GOLD and

Glide) provide various levels of speed and accuracy, a

comparative study should reveal the accuracy to expect

within a specified period of time. For instance, the early

version of our own programme, FITTED, performs as well as

other programmes, but was found to be much slower and

therefore not competitive.

For medicinal chemists, the best indicator of a pro-

gramme’s accuracy is its ability to identify novel compounds

in VS studies that are then experimentally confirmed.

However, it would be difficult to compare studies as they

often deal with different proteins and compound libraries. A

number of successful applications can be found in (Kitchen

et al., 2004; Ghosh et al., 2006; Muegge and Oloff, 2006). To

date, the available programmes (that is, AutoDock, DOCK,

GOLD, FlexX, Glide) have been very successful.

Docking accuracy. Several conclusions can be drawn from

the fair and exhaustive comparative study by Warren and co-

workers. First, as can be seen in Figure 4 (top panel), the

accuracy is highly dependent on the protein considered.

Second, none of the 10 programmes assessed clearly out-

performs all the others. However, in this study, MVP, Glide,

GOLD and FlexX may be considered the best four, while

DOCK, DockIt and MOE reproduced the native pose in only

a few cases. Other comparative studies showed that Glide,

GOLD and FlexX are among the best programmes. Chen and

co-workers reported that ICM outperformed the other three

programmes investigated. Interestingly, Perola et al. (2007)

commented on this same article that they were not able to

reproduce the high accuracy of ICM, although they found

Figure 5 Comparative studies of docking-based VS programmes. Top panel: average enrichment factors computed for a variety of enzymes
and programmes; bottom left panel: application of MVP to various enzymes; bottom right panel: evaluation of SFs for identifying actives in
large libraries. SF, scoring function; VS, virtual screening.
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that ICM is still at least as accurate as the other programmes

assessed. A series of comparative studies looked at metal-

loenzymes and revealed that the metal coordination is still

not well reproduced by many docking programmes. Engle-

bienne et al. recently looked at the a-mannosidase and

reported Glide as the best of the seven assessed programmes

(Englebienne et al., 2007).

Virtual screening accuracy. Comparing programmes for their

ability to identify actives within libraries is an even more

difficult task. In fact, each of these types of comparative

studies must be considered separately. Figure 5 summarizes

some of the data from selected comparative studies. From

a more global point of view, one can draw three major

conclusions. First, none of the programmes is universally

accurate as the data indicate that the accuracy is highly

protein dependent. Second, until recently, none of the

assessed programmes were consistently better than others,

as most of them exhibit similar overall accuracies. However,

the recent study by Warren and co-workers, which appeared

to be the largest study of this kind, clearly showed that

MVP stood out. Further investigation of this result on other

proteins is needed to confirm this important discovery.

Third, all the programmes, except for MOEDock, provide

enrichments of the top of the hit list in active compounds.

This shows that in virtually every case, it is worth running a

VS to guide the development of a focused library as

enrichment is likely to be obtained. Similarly, studies were

reported that identified the best SFs in the context of VS as

illustrated in Figure 5 (bottom right panel).

SF accuracy. Other comparative studies aim to identify the

most accurate SF in rank-ordering compounds by affinity.

The Spearman coefficient describing the ability to reproduce

Figure 6 Comparative studies of docking/scoring programmes. Top panel: average Spearman coefficient factors computed for a variety of
enzymes and programmes; bottom panel: Spearman coefficient factors computed for a set of scoring functions and consensus SFs. SF, scoring
function.
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a rank-ordered list has often been used. Figure 6 summarizes

the accuracy of various SFs as determined by a number of

different comparative studies. Comparing SFs for their ability

to identify actives within libraries is an even more difficult

task. In contrast to the docking programmes, which often

demonstrate similar accuracies, these published studies

revealed a wide range of accuracies. For instance, Bissantz

and co-workers determined that the poses produced by

GOLD were the most suitable for their VS targets (thymidine

kinase and oestrogen receptor), while identifying which SF

to use proved to be a very difficult task. Two of the SFs (PMF

and FlexX SF) that performed well for the thymidine kinase

screening were among the worst for the oestrogen receptor

screening, highlighting the target specificity of SFs. Bissantz

et al. (2000) have also shown that regardless of the docking

programme, GoldScore was often the most accurate SF of

their set. It has also been shown that consensus scoring is

often better (not always significantly) than the individual SFs

(Wang et al., 2004; Figure 6).

The challenges of docking/scoring programmes

Although considerable efforts have been devoted to the

development of accurate and fast docking/scoring methods,

a more universal method is yet to be developed. Although

developing a universal method might not be the major goal,

increasing the transferability from one protein to another of

existing methods is certainly to be improved. Among the

issues that remain to be addressed and those that are

currently being addressed are the treatment of protein

flexibility, and in particular the scoring of modelled protein

conformations, and the presence of water molecules

including the evaluation of their binding free energy.

Ligands forming covalent complexes and macromolecules

Table 3 Reported comparative studies

Programs Scoring function (SF) Reference

Glide, GOLD, DOCK Native scoring functions (Zhou et al., 2007)
FLOG, FRED, Glide Native scoring functions (McGaughey et al., 2007)
DOCK, AutoDock, GOLD Native scoring functions (Onodera et al., 2007)
N/A MMFFs, LigScore1, LigScore2, PLP1, PLP2, PMF, LUDI, X-Score (Holloway et al., 2007)
GOLD, Glide, FlexX,
AutoDock, eHiTS, LigandFit,
FITTED

Native scoring functions (Englebienne et al., 2007)

FlexX, GOLD, Glide, ICM Native scoring functions (Chen et al., 2006)
DOCK, DockIt, FlexX, Flo,
Fred, Glide, Gold, LigFit,
MOE, MVP

Native scoring functions, FlexX, DrugScore, Mcdock, Mcdockþ ,
Fulldock, Sdock, Zdock, ChemScore, ScreenScore, CVFF,DOCKPLP,
PMF. Dockit-Score, Cscore, DockScore, GoldScore, Sdockþ ,
Fulldockþ , LigScore1, LigScore2, PLP1, Dreiding, DOCK-Energy,
DOCK-Chemical, DOCK-Contact

(Warren et al., 2006)

N/A PLP1, PLP2, LUDI, PMF, DockScore, GoldScore, ChemScore,
LigScore1, LigScore2, CFF91, AMBER94, RankScore

(Moitessier et al., 2006a)

Glide, LigandFit, FlexX,
DOCK

LigScore1, LigScore2, PMF, PMF, ChemScore, GoldScore, GoldScore,
FlexX, PLP1, PLP2

(Kontoyianni et al., 2005)

DOCK, DOCKVISION, Glide,
GOLD

Native scoring functions, consensus scoring (Cummings et al., 2005)

FlexX, DOCK, GOLD,
LigandFit, Glide

Native scoring functions (Kontoyianni et al., 2004)

DOCK, FlexX, FRED, Glide,
GOLD, SLIDE, SurFlex, QXP

Native scoring functions (Kellenberger et al., 2004)

Glide, GOLD, ICM ChemScore, GlideScore, OPLS-AA (Perola et al., 2004)
N/A BLEEP, PMF, GoldScore, DockScore, ChemScore (Marsden et al., 2004)
DOCK, FlexX, GOLD,
AutoDock

Native scoring functions, DrugScore, X-Cscore (Hu et al., 2004)

N/A X-Score, DrugScore, D-Score, PMF-Score, GoldScore, ChemScore,
F-Score, LigScore, PLP, PMF, LUDI, HINT

(Wang et al., 2004)

N/A CHARMm, DOCK-Energy, DOCK-Chemical, DOCK-contact,
DrugScore, ChemScore, AutoDock, PMF, GoldScore

(Ferrara et al., 2004)

FlexX, GOLD, ICM,
LigandFit, the Northwestern
University version of DOCK,
QXP

Native scoring functions (Kroemer et al., 2004)

Glide, FRED FlexX, ScreenScore, GlideScore, GlideComp, ChemScore, PLP (Schulz-Gasch and Stahl, 2003)
DockVision, GOLD LUDI, GoldScore (Jenkins et al., 2003)
AutoDock, DOCK, FlexX,
GOLD, ICM

Native scoring functions (Bursulaya et al., 2003)

FlexX FlexX, PLP, DrugScore, PMF, ScreenScore (Stahl and Rarey, 2001)
GOLD SCORE, LUDI, GRID, PMF, DockScore, GoldScore, ChemScore,

F-Score
(Terp et al., 2001)

DOCK, AutoDock Native scoring functions (Hanessian et al., 2001)
DOCK, FlexX PMF, FF (Ha et al., 2000)
DOCK, FlexX, GOLD Chemscore, DockScore, FlexX, Fresno, GoldScore, Pmf, Score (Bissantz et al., 2000)

Abbreviation: N/A, not available.
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such as nucleic acids and metal-containing enzymes are

subjects in need of further study. Each challenge requires

examination of both docking and scoring. Considering that

the free energy of binding is a combination of subtle

enthalpic and entropic effects but that high-throughput

scoring is desired, careful approximations have to be made

when developing SFs. Unfortunately these approximations

inevitably add noise to the SFs, resulting in reduced accuracy.

In the following section we will describe what we believe are

the remaining issues facing the developers. To illustrate the

state-of-the-art, examples are given in each of these sections.

However, the following descriptions are limited to the

reported features of each programme, although we are aware

that some features such as the docking of covalent inhibitors

with AutoDock are described only in user manuals and/or on

web pages.

Exhaustive sampling vs speed. Despite the considerable

efforts to address the problem of conformational sampling

using a large panel of algorithms, one is always left with the

task of balancing speed and accuracy. On one end of the

spectrum, one can apply crude but fast docking (for example,

rigid-body docking) and scoring (for example, shape com-

plementarity) approaches. In practice, many fast pro-

grammes that only consider discrete values for the many

degrees of freedom were enhanced by local search algorithms

(simplex, Solis and Wets in AutoDock, conjugate gradients),

although significantly extending the time required for the

computations. On the other end of the spectrum, one can

apply molecular dynamics-based approaches that would

consider the Boltzmann’s distribution of conformations

(for example, Linear Energy Interaction). While being

accurate in predicting relative binding affinity of congeneric

compounds, these latter methods cannot be applied to large

libraries of ligands (for example 100 000 compounds) due to

their speed.

Protein flexibility. Another major factor that significantly

limits the accuracy of today’s docking methods is protein

flexibility upon ligand binding (Bursavich and Rich, 2002).

Najmanovich et al. (2000) pointed out in a statistical analysis

of Brookhaven protein databank (PDB) structures that 85%

of the proteins contain one to three flexible residues.

Although this number of flexible side chains can be

considered small, a slight adjustment of the protein can

have a significant effect on the molecular recognition

process. As a result, the success rate drops significantly when

going from self- to cross-docking (Osterberg et al., 2002). Due

to the large fraction of flexible proteins reported, flexibility

cannot be ignored. Many approaches were proposed and

recently reviewed (Cavasotto et al., 2005), although very few

of these have been made available to the greater medicinal

chemistry community.

Among these approaches, the docking of ligands to soft

structures (reduced van der Waals penalties at short dis-

tances; for example, LJ 8-4 in GOLD) simulates slight

adjustments of the protein. A similar practice reduces the

van der Waals optimal distances thereby uniformly enlarging

the binding site (smooth potential in AutoDock 3.0 and

vdW offset in ADAM). Local optimization of hydrogens is

also possible (polar hydrogens in GOLD, all hydrogens in

PLANTS). Overall, these approaches were found to improve

the docking accuracy but not when considerable side chain

rotations are observed. The first attempt to account for larger

moves has been reported by Leach (1994) and relied on

libraries of side chain rotamers. Similar approaches have

since been devised (Frimurer et al., 2003) and even

implemented in available programmes. ICM offers the use

of biased probability moves of the side chains coupled with

Monte Carlo search of the ligand pose (Totrov and Abagyan,

1997). Docking to multiple structures can also account for

side chain movement (EUDOC) while significantly increasing

the required CPU time.

Ideally, one would like to dock ligands to virtual proteins

where the flexibility, including backbone adjustments and

side chain rotamers, is considered on-the-fly. To this effect,

two other major approaches have been proposed. For

programmes relying on grids for scoring, combination of

grids derived from more than one protein conformations can

be either combined leading to one (for example, DOCK;

Knegtel et al., 1997) or to a set of individual grids (for

example, AutoDock; Osterberg et al., 2002) or aligned into a

larger grid modelling the conformational ensemble (Sotriffer

and Dramburg, 2005). The great advantage of this approach

is that the time required for a single run is roughly similar

to the time necessary to dock to a rigid protein. For

programmes using atomic representations, docking to

composite structure ensembles has been shown to signifi-

cantly enhance the docking accuracy (for example, FlexE,

FITTED). These composite structure ensembles can be

implemented in different ways. Within FlexE, multiple

crystal structures are merged where similar, while the

dissimilar areas are marked as different alternatives. Upon

docking, the ligand is compared with each alternative and

the best scoring protein structure is selected. Within FITTED,

the evolution of the individual allows for the crossover of the

conformation of the backbone and active site residues

independently of each other. An induced-fit docking method

has also been developed (SLIDE), removing clashes between

the ligand and the protein by directed, single bond rotation

of either the ligand or the side chains of the protein.

Although conformational flexibility of proteins is now

implemented in some programmes, one major challenge

remains to be addressed. As soon as the correct protein

structure is found, it must be attributed a score. Considering

the subtle protein entropy and enthalpy changes upon

binding is very challenging. To our knowledge, ICM is the

only programme that approximates these two contributions

(Abagyan and Totrov, 1994a), while FITTED implicitly

considers the entropy cost by reducing the interaction

energy between the docked ligand and flexible residue side

chains but disregards the protein enthalpy change. ROSET-

TALIGAND computes all the intramolecular interactions of

the proteins when reconstructing and evaluating side-chain

conformations.

Water molecules. The presence of water molecules critical to

the binding of ligands adds another dimension to the docking

problem (Ladbury, 1996; van Dijk and Bonvin, 2006a; Barillari

et al., 2007; Li and Lazaridis, 2007). Although these water
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molecules are often removed, other options exist. First, one

can keep them explicitly. This approach has the drawback of

preventing the docking of ligands requiring displacement of a

water molecule. Another approach is to implement a protocol

that will select the best option (keep or displace each of the

water molecules). Such methods have only been implemented

in GOLD, FlexX and SLIDE in which waters are toggled on or

off, and in FITTED, which makes use of a specific potential

energy term. The FlexX method is unique in the way it

‘predicts’ potential locations of water molecules, thereby not

relying on their crystallographic positions.

Unfortunately, these approaches have not been extensively

applied and validated by independent studies. In addition,

water locations should be optimized upon docking of ligands, a

property that has only partially been addressed by SLIDE. The

latter translates the water molecule to remove collisions with

protein or ligand atoms but, to our knowledge, does not

consider the energetics associated with these moves. Once

more, scoring the presence/absence of water molecules is a

challenge that remains to be dealt with. The key issue in this

context is the consideration of the binding free energy of these

specific water molecules. For instance, FITTED, GOLD and

SLIDE add a penalty for each displaced water molecule to the

final score. However, each water molecule has a different free

energy of binding that cannot be accurately represented by a

single value (Gohlke and Klebe, 2002).

Covalently bound inhibitors. Although many enzymes are

targeted by covalent inhibitors (reversible or irreversible),

little effort has been dedicated to this specific area. For

instance, GOLD (Jones et al., 1997), FlexX (Kramer et al.,

1999) and AutoDock allow the user to manually select which

atoms of the ligand and protein are to be joined by a

covalent bond and add the protein atom to the ligand input

file. However, these methods are hardly amenable to VS of

large libraries of compounds given that the user must

manually locate the covalent bond and insert it in each

individual input file. MacDOCK combines ligand–protein

docking (DOCK 4.0) with ligand–ligand superposition to

mimic the pose of a covalently bound inhibitor (using the

module MIMIC). Within MacDOCK, anchor-guided AG-

DOCK includes the location and directionality of the atoms

involved in the covalent bond in the docking (Fradera et al.,

2004). The functionalities within the ligand that can form

covalent bonds and the site of covalent binding of the

protein are automatically identified. The geometrical

arrangement is then modified to match that of the product

structure. If several functional groups can be used, poses

are generated for each one and docked to generate a set of

product structures, which are then compared. The SF is

modified to ignore the van der Waals clashes at the site of

formation of the covalent bond. To our knowledge, no other

programmes consider the formation of a covalent bond

upon ligand binding, and scoring the formation of this

bond remains to be explored.

Nucleic acids. Proteins have been the major targets of

docking methods. However, nucleic acids are also targets

for medicinal chemistry and should be further investigated.

One of the major challenges lies in the fact that binding

pockets on nucleic acids are highly charged and more

solvent exposed than the binding sites of most proteins,

which can be deeply buried. Docking DNA intercalators is

even more challenging, as a major opening of the bases must

occur to bind the ligand. The first attempts for docking to

nucleic acids relied on the use of existing programmes

originally developed for docking small molecules to proteins.

For instance, Chen et al. (1997) used DOCK 3.5 to identify

possible binders to the RNA major groove, while Leclerc and

Karplus (1999) used the MCSS method. The authors noted

that the effect of solvent on the ligand–RNA interaction was

not evaluated and represented a necessary improvement.

In just a few cases, existing programmes were modified to

account for the high polarity of nucleic acids (Pan et al.,

2003; Kang et al., 2004).

In addition to the high charge density, flexibility of the

nucleic acid strands and presence of key water molecules

have been some of the hurdles to the successful applications

of docking programmes in this area. In fact, flexibility and

water molecules were found to be necessary to improve

docking accuracy (Moitessier et al., 2006b). DNA flexibility

has been addressed using the HADDOCK programme and

semi-flexible refinement using simulated annealing methods

following rigid docking (van Dijk et al., 2006b). To our

knowledge, few SFs have been specifically designed to score

RNA binders. HADDOCK has its own SF, HADDOCK Score,

which includes FF terms, solvation energies and a buried

surface area term. The DNA conformations are scored using

deformation energies calculated from statistical preferences.

RiboDOCK evaluates specific nucleic acid–ligand interac-

tions such as aromatic stacking onto the nucleic acid bases

and interaction between guanidinium and carbonyl func-

tions. In these two programmes, the water molecules are not

directly addressed (Morley and Afshar, 2004). Chen et al.

(2004) developed an SF that can identify native protein–RNA

structures from the incorrectly docked decoys based on

hydrogen-bonding geometries and scores, which they be-

lieve to be nucleic acid specific. Finally, Ge and co-workers

developed a knowledge-based SF that considers the binding

patterns of ligands around individual bases. This approach

does not directly address the presence of water, instead

considers the frequency of the observed water at a hydration

site (Ge et al., 2005).

Entropy. Computational evaluation of the entropy is often

based on normal mode analysis or other CPU-expensive

approaches. Using such approaches would significantly

reduce the throughput of docking methods. To date, the

translational and rotational entropy loss estimated in the

range of 15 to 20 kJ mol�1 is ignored (Murray and Verdonk,

2002) and most SFs consider the number of rotatable bonds

as an estimate of the entropic contribution to the binding

free energy. However, not all the bonds are equal and

penalties should be assigned accordingly. Indeed, Chem-

Score considers rotatable bonds in the context of their

hydrophobicity; apolar portions tend be more flexible in a

binding site than polar fragments and are less penalized.

A more advanced approach has recently been proposed that

evaluates the restriction of the ligand conformational space

by considering a large number of poses (Ruvinsky, 2007) at
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the expense of CPU time. As mentioned above, the changes

in protein entropy are seldom implemented in available

programmes (for example, ICM and FITTED).

Solvation. Apart from the bridging water molecules, the effect

of solvation by bulk water is a key player in ligand protein

binding. Although fairly accurate methods have been reported

such as GB/SA and PB/SA (Taylor et al., 2003; Morreale et al.,

2007), their implementation in a given docking programme

affects the time required to perform a single run unless pre-

computed on a grid (DOCK 5) or on the unbound protein

(FITTED 2.0). In order to reduce the CPU cost, one can look at

ligand lipophilicity as a measure of its desolvation without

considering the protein desolvation, which can be assumed to

be constant regardless of the pose of the docked ligand.

However, larger ligands imply larger desolvation of the binding

site and various poses for a single ligand can require the

desolvation of different residues. Approaches with higher

throughput have been devised, such as the use of atom-based

solvation parameters evaluating the buried surface, as exem-

plified by the AutoDock and Hammerhead SFs, which also

penalize the hydrogen bond-capable sites that are not fulfilled.

Solvation is known to be partly proportional to the change in

solvent-exposed surface area. Based on this concept, DrugScore

and ICM evaluate the solvation contribution to the free energy

of binding using a term proportional to this area.

Metals. Many groups have looked closely at the scoring of

metalloprotease inhibitors (Hu et al., 2004; Irwin et al., 2005;

Khandelwal et al., 2005; Englebienne et al., 2007; Jain and

Jayaram, 2007) and identified the scoring of metal coordina-

tion as a major issue in SFs. In fact, metals can adopt various

coordination geometries and docking to metals remains a

challenge. Coordination templates have been exploited by

GOLD to orient the docking towards potential coordination

geometries. However, this has been found to increase only

marginally the docking accuracy (Englebienne et al., 2007).

As soon as the pose is generated, scoring the binding to the

metal is the next issue, and very few SFs such as the eHiTS SF

include a specific metal binding term. Only eHiTS, SLIDE

and Surflex SF take the geometry restraints into account.

Again, evaluation of the impact of these additional terms has

not been often investigated, and one cannot state that they

significantly improve the docking/scoring accuracy.

Specific interactions. Most of the developed programmes

account for the most common interactions such as hydrogen

bonds, hydrophobic and ionic interactions. However, the

seldom studied and observed interactions, such as cation–p
interactions (Scharer et al., 2005) or CH–p interactions

(Gil et al., 2007), are not captured by the available SFs and

specific functions remain to be developed. This lack is due in

part to the low number of complexes featuring these

interactions in the PDB. Other interactions such as weak

hydrogen bonds required considerable efforts to be consi

dered by SFs or docking programmes (Verdonk et al., 2004).

Training set quality. An accurate SF has to be trained and

tested against a high quality set of protein ligand complexes

and care must be taken to select the protein–ligand

complexes (Hartshorn et al., 2007). Efforts are being made

to prepare large databases of high-quality protein–ligand

complexes (for example, PDBbind, BindingDB, Relibase) to

calibrate SFs. However, automated preparation of some of

these publicly available large data sets does not allow for

their refined preparation. For instance, a careful identifica-

tion and orientation of bridging water molecules or the

optimal protonation state of each residue and ligand has

rarely been carried out, even though it has a great impact on

the accuracy of the derived SF. In addition, some of the

biological data collected is difficult to interpret and use, such

as the very different affinity values reported for an adenosine

deaminase inhibitor (PDB codes 1fkx and 2ada; Ki¼6 mM

and 0.1 pM, respectively).

The PDBbind-refined set of 800 complexes has been used

to assess the accuracy of available SFs (Wang et al., 2004). In

contrast to our unpublished study, Wang and co-workers

have found that all the SFs were poorly predictive for HIV-1

protease inhibitors. In fact, this particular enzyme binds

ligands with the need of a water molecule and ligand-

dependent protonation state of the two catalytic aspartic

acids (Yamazaki et al., 1994; Kulkarni and Kulkarni, 1999;

Czodrowski et al., 2007). However, in their protocol, water

molecules were all removed and protonation was automati-

cally assigned to ionized aspartic acids.

A disadvantage of using crystal structures of protein–ligand

complexes to derive predictive methods is that for the former

to exist, the ligand needs to bind to the protein to a certain

extent. As a result, SFs are not trained with non-binders. As

obvious as it sounds, SF should be trained against completely

inactive compounds as well in order to be able to discriminate

the latter. In a recent development, Pham and co-workers

recently showed that docked compounds can help train an SF

against inactive compounds (Pham and Jain, 2006).

Although various sets have been reported and made

available, the ultimate benchmark set should be a set for

cross-docking studies. As mentioned above, self-docking is

not representative of a true medicinal chemistry scenario,

while cross-docking is a more reliable evaluation of a

programme’s performance.

Docking to homology models. It has been observed that

moving from crystal structures to homology models often

leads to a decrease in accuracy. Solutions to reduce this

discrepancy by inclusion of additional information (QSAR

data in DRAGHOME; Schafferhans and Klebe, 2001, and SAR

information in DoMCoSAR; Vieth and Cummins, 2000) have

been proposed although not extensively validated. Rognan

and co-workers successfully used homology models of G-

protein-coupled receptors to dock antagonists to three

human G-protein-coupled receptors; the docking of agonists

remains elusive (Bissantz et al., 2003). More recently, Ferrara

and Jacoby (2007) evaluated the docking accuracy on

homology models and showed that the accuracy can in

some cases be as high as with crystal structures.

Conclusion

We have reviewed herein the state-of-the-art in the field of

small-molecule-protein docking and scoring methods. Com-
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parative studies, the only available tools to evaluate relative

performance of docking programmes, are often carried out

by chemists with varying expertise and using different

metrics to define accuracy/success. Conclusions and results

are difficult to extrapolate to other proteins. An interesting

proposal would be to set up a large blind competition

analogous to CAPRI in the field of protein–protein docking

(http://capri.ebi.ac.uk/). Overall, these comparative studies

indicate that none of the docking programmes truly outper-

forms the others, and the high accuracy observed for ICM

and MVP in the two largest and most recent comparative

studies remains to be cross-validated.

Ultimately, docking/scoring programmes should be able to

identify novel potential ‘binders’ very accurately. However,

to reach this goal, many issues, including those discussed

throughout this review, have yet to be addressed. Currently

other strategies, such as post-docking strategies or smart

selection of docked compounds, are used to reduce the

number of false positive and negatives.
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